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Abstract  

 

The rule-to-rule hypothesis says that every syntax rule has its counterpart in semantics. If we 

replace semantics with translation, we get a basic concept a machine translation system can rely 

on. Syntax-translation pairs are represented by pairs of patterns where pattern can stand for both 

rules and lexical items. Combining the advantages of example-based and rule-based machine 

translation, a new paradigm, pattern-based translation is introduced. The system called 

MetaMorpho based on these principles has been tested for English-Hungarian translation, and 

showed very promising results both in translation quality and speed. 

1. Rule-to-rule Translation 

 

The meaning of a complex linguistic structure is wholly determined by its sub-structures and the 

meanings of them. In the Rosetta machine translation system (Landsbergen 1985) we can meet a 

rather direct application of the compositionality principle: „The meaning of an expression is a 

function of the meaning of its parts and the way in which they are syntactically combined. This 

principle was adopted from Montague Grammar (Thomason 1974). Obviously, this principle will 

lead to an organization of the syntax that is strongly influenced by semantic considerations. But 

as it is an important criterion of a correct translation that it is meaning-preserving, this seems to 

be a useful guideline in machine translation.” (Appelo et al 1987) Semantic compositionality 

was formalized by the rule-to-rule hypothesis of Bach (1976): it says that a tight correspondence 

is imposed between syntax and semantics such that every rule of syntax is also a rule of 

semantics. 



 

 

 

In the reality, the meaning of a complex structure cannot always be built by a function of its 

parts, therefore it should be treated as an unstructured unit. This is how structures are described 

in construction grammar (Goldberg 1995). Perfect harmony between syntactic and semantic 

composition rules can only be found in artificial languages. The rule-to-rule hypothesis seems, 

however, a useful working assumption in machine translation as well: if a structure can be 

described syntactically in the source language, it can also be described by structures of the target 

language. Of course, human languages are not as exactly formalized as formal languages. In 

cases of ambiguous source language sentences, more than one target language description is 

permitted to produce. If a source structure is underspecified, target structures are minimally as 

underspecified as the source was. Technically, the only thing that can be introduced is an extra 

layer to a phrase structure (sub-)tree, what we call the translation of the actual sub-tree. So a 

compositional approach to translation will have a representation of the contribution of each word 

and sub-phrase towards the translation of the whole.  

2. Rule-based and Example-based Machine Translation Strategies 

 

As it is well-known, three well-known different rule-based approaches to MT are traditionally 

distinguished: direct, interlingual and transfer. The direct method is the strategy adopted by most 

early MT systems. It uses a primitive one-stage process in which words in the source language 

are replaced with words in the target language and then some rearrangement is done. The main 

idea behind the interlingua method is that the analysis of any source language should result in a 

language-independent representation. The target language is then generated from that language-

neutral representation. The transfer method first parses the sentence of the source language. It 

then applies rules that map the grammatical segments of the source sentence to a representation 

in the target language. The three methods are usually shown with the help of source language–

interlingua–target language triangles (Figure 1). 

 

 



 

 

Figure 1. The basic machine translation strategies 

 

On the other hand, example-base machine translation (EBMT) was suggested in the eighties, for 

example, by Nagao (1984) as a better approach to machine translation than rule-based machine 

translation (RBMT). Since then, several authors, like McTait (2001) and Carl (2001) have 

pointed out that the performance of EBMT can considerably be improved by adding linguistic 

background knowledge to the system. The goal of our research was to find an optimum between 

EBMT and RBMT in terms of practical applicability: translation quality and speed. EBMT is 

generally considered a statistics-based, probabilistic process, whereas RBMT is often thought of 

as a fixed, traditional, deterministic approach. In contrast, we believe that EBMT and RBMT are 

just the two extremes of a generalized model. In our model, there is an arbitrary number of 

possible transitions between the two. Not all of our “examples” have been directly extracted from 

corpora, or produced by statistical analysis. Rather we opted to build a database of structural 

segments, which have been generated from various sources: not only corpora, but various 

dictionaries of idioms and collocations. Besides multi-word lexemes we had to add some single-

element lexical entries to the collection, as well. However, in many cases, their linguistic 

behavior has been described by expanding them to multi-word units. Namely, words do not occur 

alone, but in context: we have added context to them: instead of a single entry for the English 

verb add we have made add a nought (‘hozzáír’), add a piece to [N] (‘megnagyobbít’), add 

[NUM] to [NUM] (‘összead’), add to [N+GEN] difficulties (‘növeli vk nehézségeit’), add to 

[N+building]  (‘hozzáépít’), etc.  

3. Pattern-based Language Description 

In our MetaMorpho formalism both what are traditionally called rewriting rules and lexical 

entries are integrated in the form of patterns. Currently we have more than 200 thousand patterns, 

the majority of which are lexicalized items. The system uses no separate dictionary: what would 

traditionally be lexical entry is integrated in the form of patterns. A lexical and a grammatical 

pattern are shown by Example 1.  

 

NX[N.lex, N.num] = N(lex=”dog”)  

 

VP[TV.conj] = TV(lex=”meet”, pass=NO) + DOBJ  

 



 

 

Example 1. 

 

The patterns in the grammar are much more complex than the ones shown. For the sake of 

human readability and maintainability, lexical items are coded in a simpler form where all non-

lexical information is omitted. The actual rules are then generated off-line from their simplified 

source. A large amount of linguistic knowledge is effectively encoded in this conversion. The 

philosophy behind this is to remove the burden of interpreting a complex and linguistically 

motivated formalism from the parser while representing the same linguistic knowledge in an off-

line step.   

 

The grammar itself operates with pairs of patterns that consist of one source pattern used during 

bottom-up parsing and one or more target patterns that are applied during top-down generation. 

A pair of patterns looks like the ones in Example 2: they describe the basic use of English words 

dog and meet (somebody) and their Hungarian translations. 

 

(1) *NX=dog:0401311411  

(2) EN.NX[N.lex, N.num] = N(lex=”dog”)  

(3) HU.NX = N[lex=”kutya”, NX.case, NX.ownernum, NX.ownerpers]  

 

(4)  *VP=meet+DOBJ:0401311343  

(5)  EN.VP[TV.conj] = TV(lex=”meet”,pass=NO) + DOBJ  

(6)  HU.VP(focus=NO,EN.DOBJ.reqfocus=YES) = DOBJ[case=INS] + TV[lex=”találkozik”,VP.tense]  

(7)  HU.VP = TV[lex=”találkozik”, VP.tense] + DOBJ[case=INS]  

 

Example 2. 

 

The lines show the name of the grammatical phenomenon described by the patterns (1,4), the 

English source pattern (2,5), and the Hungarian target patterns (3, 6 and 7). (6) is used when 

direct object of meet requires focus position in the Hungarian output, and (7) is used when it does 

not.  

 

Every terminal and non-terminal symbol (or what is equivalent, the corresponding node in the 

syntactic tree under construction) has a well-defined set of features. The number of features 

varies between zero and a few dozen, depending on the category. These features can either take 

their values from a finite set of symbolic items (e.g., values of case can be INS, ACC, DAT, 



 

 

etc.), or represent a string (e.g., lex=”meet”, that is, the lexical form of a token). The formalism 

does not allow for embedded feature structures. It is important to note that no structural, semantic 

or lexical information is amassed in the features of symbols: the interpretation of the input is 

contained in the syntactic tree itself, and not in the features of the node on the topmost level.  

 

A pattern can be “productive,” which means it contains little or no lexical information. Such a 

pattern would be, for instance, VP=TV(vti=VT)+DOBJ, which describes the fact that a transitive 

verb and an object can form a verbal phrase. Such patterns are traditionally called rules. Partly or 

fully lexicalized patterns, on the other hand, contain rather specific lexical information, e.g. 

VP=TV(lex=“meet”)+DOBJ, VP=TV(lex=“count”)+PPOBJ(lex =“on”), expressing that 

meet needs a direct object, or count has a prepositional object with on as its valence.  

 

English input:  
1---2----3---4----5-----6--7-------8 

Jim does not sink money in anything. 

1-- 

Jim 

    2---- 

    tesz 

         3--- 

         nem 

             4------ 

             mosogató 

             süllyed 

             süllyeszt 

    2----3---4---- 

    nem süllyed 

    nem süllyeszt 

                  5----- 

                  pénz 

                           7-------- 

                           bármi 

                  5-----6--7-------- 

                  pénz bármiben 

             4----5-----6--7-------- 

             befektet pénzt bármibe 

             4----5---- 

             pénzt süllyeszt el 

             befektet pénzt 

    2----3---4----5----- 

    nem fektet be pénzt 

    2----3---4----5-----6--7------ 

    nem fektet be pénzt semmibe 

1---2----3---4----5-----6--7------8 

Jim nem fektet be pénzt semmibe. 

 

Example 3. 

 



 

 

More specific patterns (e.g. count on) can override more general ones (e.g. count), meaning that 

all subtrees containing symbols that were created by the general pattern are deleted. Every 

symbol that is created and is not eliminated by an overriding pattern is retained even if it does not 

form part of a correct sentence’s syntactic tree. Each pattern can state any number of overrides on 

other rules: if the overriding rule fires over a specific range of the input, it blocks the overwritten 

one over the same range. Example 3 shows some of the sub-structures and an overriding made 

while parsing. 

 

Not only is this extremely useful for debugging purposes, but it allows for “best guesses” when 

no interpretation for a whole sentence is found in real-life applications. 

4. Applying Rule-to-Rule Translation 

 

The analysis of the input is performed in three basic steps. First the sentence to be translated is 

segmented into terminal symbols or tokens. This token sequence is the actual input of the parser. 

The morphological analyzer determines all the needed morpho-syntactic attributes of these 

symbols. We use the Humor analyzer (Prószéky & Kis 1999) that is based on surface patterns. 

The basic strategy of Humor is inherently suited to parallel execution: search in the main 

dictionary, secondary dictionaries and affix dictionaries can be performed in a parallel way. In 

case of agglutinative languages like Hungarian, where the number of inflected word-forms for a 

single word is well over hundreds, a reliable morphological generator is a crucial part of any 

translation tool. The advantage of Humor is that it can be used as a generator as well as an 

analyzer. The system accepts unknown elements: they are treated as strings to be inflected at the 

target side. In fact, not the string, but its “pronounced” transcription is inflected by the Hungarian 

generator (Example 4).  

 

I met Ms. Gerber.  

Találkoztam Ms. Gerberrel. 

 

I met Mr. Isabelle.  

Találkoztam Mr. Isabelle-lel. 

 

I met Mrs. Bordeaux.  

Találkoztam Mrs. Bordeaux-val. 

 

Example 4. 

 



 

 

Second, Moose, a bottom-up parser (Prószéky et al. 2004) analyzes this input sequence and if it 

is recognized as a correct sentence, comes up with one or more root symbols. When the whole 

input is processed and no applicable patterns remain, the target equivalent is read top-down from 

the root symbols by firing the target pattern corresponding to the source pattern that created the 

edge at parse time. This solution we can call “immediate transfer” as it uses no separate transfer 

steps or target transformations.  

 

Pattern pairs can have conditions in the left-hand side, and in the case of multiple target patterns, 

the first one whose conditions are satisfied is fired. The right-hand side of the source pattern can 

state conditions for any of its symbols’ values. To handle more complicated word-order changes, 

however, a stronger means of rearrangement is also provided: interpretation of the source 

structure in the target structure may need rearrangement of its elements within the scope of a 

single node and its children. Three subtree interpretations are allowed: (i) permutation of the 

node’s children, (ii) deletion of one or more children from the target tree, and (iii) insertion of 

terminal symbols. Example 5 shows MetaMorpho’s translation trees for the sentence I have gone 

home. Its translation is Hazamentem. Numbers in curly brackets show the number of the source 

pattern belonging to the Hungarian translation.  

 

EN.S_ROOT 2457 

    S_FULL 2454 

    |---CS 1609 

    |   |---SUBJ 64 

    |   |   |---NP 59 

    |   |       |---PRON lex="I", num=SG, pers=P1, case=NOM 

    |   | 

    |   |---MPRED 1601 

    |       |---V lex="have", form=F1 

    |       |---PRED 1600 

    |           |---VP 1561 

    |               |---TV 245 

    |               |   |---V lex="go", form=F3 

    |               | 

    |               |---PART lex="home" 

    | 

    |---PUNCT lex="period" 

 

HU.S_ROOT 2460{2457} 

    S_FULL 2461{2454} 

    | 

    |---CS 2462{1609} 

    |   |---SUBJ 2471{64} 

    |   |   |---PRON num=SG, pers=P1, case=NOM 

    |   | 

    |   |---PRED 2472{1600} 

    |       |---V ik="haza", lexb="megy", num=SG, pers=P1 

    | 



 

 

    |---PUNCT lex="period" 

 

Example 5. 

There are various differences in the source and the target structure: the Hungarian tense system 

essentially simpler than English, but compounding is very productive and non-third person 

subject of sentences are not explicitly given in most cases. Thus, I is translated as a verbal suffix, 

the present perfect structure expressed by have plus the verb’s third form becomes simple past in 

Hungarian and go home is expressed by a single word in Hungarian: hazamegy.  MetaMorpho’s 

full parsing of this English sentence needed 2458 steps, the synthesis of the Hungarian output 

was made in 26 steps. This big difference between the numbers of steps in analysis and 

generation is of general importance: it illustrates that the output is perfectly given when the parse 

is over, so the only operation to be done is simplification of the target description of the root 

element of the analysis.  

 

A subtree can be memorized in a feature when a unification operation takes places at parse time, 

and because this feature’s value can percolate up the parse-tree and down the target tree, just like 

any other feature, a phrase swallowed at any level in the source side can be expanded at a 

completely different location in the target tree. The power and simplicity of subtree 

memorization and random insertion can be demonstrated in Example 6 with the translation of 

English possessive structures into Hungarian: the eighteenth birthday of Kinga translates into 0-

DET/the Kinga-N/Kinga tizennyolcadik-NUM/eighteenth születésnapja-N+POS/birthday, that is, 

the order of the two nominal phrases is reversed and the determiner absorbed by the proper noun: 

Kinga tizennyolcadik születésnapja.  

 

EN.NP_ROOT 244 

    DET lex="the" 

    NM 234 

        NNY 134 

            ADJP 118 

                NUM lex="eighteen" 

            NZ 131 

                N lex="birthday", num=SG 

        PREP lex="of" 

        NP 225 

            N lex="Kinga", num=SG 

 

HU.NP_ROOT 320{244} 

    NP 323{225} 

        N lex="Kinga", num=SG, case=NOM, postp="" 

    NM 324{234} 

        ADJP 338{118} 

            NUM lex="tizennyolc" 



 

 

        NZ 339{131} 

            N lex="születésnap", num=SG, case=NOM, postp="" 

 

Example 6. 

 

Through the interplay of only two patterns (the place of memorization at N-bar level and 

insertion at NP-level), a possessive structure of any length is translated recursively in reverse 

order into Hungarian.  

 

As a consequence, we can say that MetaMorpho’s translation method is opposed to traditional 

transfer approach in that there is no need to “transfer” an abstract structure at any level: we create 

our analysis with the final output in mind, and can produce the result in a very straightforward 

manner, without any need for complex independent transfer methods following syntactic 

analysis. However, MetaMorpho does not use interlingual representations, thus it would be 

misleading to claim that it belongs to direct translation systems. Unlike the first primitive 

machine translation systems, MetaMorpho uses systematic grammatical descriptions and a 

mechanism that is a variant of the rule-to-rule idea of Bach: the target equivalent of a 

MetaMorpho source structure is its translation and not the formal logical representation of its 

semantics. Summarizing the above, MetaMorpho seems to belong to a fourth machine translation 

paradigm. Its shows, of course, some relation to the Rosetta machine translation system 

(Landsbergen 1984) which uses logical semantic representations. Rosetta really used the rule-to-

rule hypothesis, but that representation was considered as an interlingua what differs basically 

from the MetaMorpho approach. Therefore, we introduce a fourth approach to machine 

translation for MetaMorpho, as it is represented by Figure 2. 

 

 

Figure 2: Strategies of MT solutions with MetaMorpho 

 

5. Implementation Details 

 



 

 

The principles and modules discussed above are used in a real-life application translating from 

English into Hungarian. The system, MetaMorpho, is designed to provide a translation quality 

that should be high enough to serve both comprehension assistance and authoring needs. Its 

modules have been written in programming language C
++

. The basic linguistic modules, core 

patterns have been written and tested in a special development environment. The number of these 

core type patterns for a language is surprisingly low: it is in the magnitude of 1000 for a language 

like English. These basic patterns serve as generalized examples for the more specific ones. 

Lexical patterns have mainly been derived from existing lexicons and collocation databases.  

 

The motivation for creating Moose, the robust bottom-up parser (Prószéky et al. 2004) is that the 

grammar’s applications invariably require access to a parse’s partial results in the absence of a 

full parse tree. The parser invokes a user-defined filter when parsing is complete. These filters 

have access to all parse trees and can select, for instance, a disjunctive coverage of the input 

tokens.  

 

Many machine translation systems described as promising in the literature could not reach their 

full potential, mainly because it was very difficult to expand their lexicon to a size that can be 

used without problems by an average user. To avoid this, we have also implemented a grammar 

writer’s workbench, called RuleBuilder. This allows the controlled addition of new, lexical or 

even syntactic patterns into the grammar. With the help of this, the (authenticated) user can add 

and modify the rules of the grammar on-line without the need to recompile the rest. Around this 

interface a grammar development workbench with many debugging features has been built to 

facilitate the work of grammar writers.  

 

We have to note, nonetheless, that even though our coders found the strict descriptive formalism 

acceptable and had extensive sample sets to work with, it required a great effort to coordinate 

their work and obtain coherent results. At any rate, coding was followed by thorough manual 

testing. As opposed to the rather low number of core patterns, the number of lexical patterns is 

well in the hundreds of thousands. Assuming that one pattern can be stored in 100 bytes and a 

typical PC can be expected to have 100 megabytes of free RAM, the maximum number of 

patterns that might be used by the system can even be around the magnitude of million. 



 

 

 

6. Future Work 

 

We have started to work on a combination of the MetaMorpho machine translation tool and 

translation memories. The integration with an SQL database forms the basis of this combined 

solution (Hodász et al. 2004). Taking advantage of MetaMorpho's ability to translate incomplete 

sentences, we could translate this differing part of the sentence and thus improve the efficiency 

of translation memories. MetaMorpho currently fetches only the first target equivalent from the 

lexical patterns. This could be changed by reordering the target equivalents according the 

context. A word-sense disambiguation module providing semantically disambiguated output is 

under development. We are also working on a topic recognition module running the same way as 

language identifier programs do but identifying the sublanguage (business, medicine, sport, etc.) 

having a well recognizable terminology within a single language, say English. Once the topic 

identifier determines the topic, it sets MetaMorpho's lexical patterns’ target equivalent ranking 

accordingly.  

 

7. Summary 

 

MetaMorpho is an innovative system in many ways. It applies the rule-to-rule hypothesis of 

Bach for translation purposes. The system relies on a uniform description of lexical and 

structural information called patterns: they are basic tools for describing both standard and 

idiomatic behavior of sentences, clauses and phrases. If a pattern is short and fully specified, it is 

a lexical entry in the traditional terminology. If it is longer, but fully specified, it is an idiom, or a 

specific example. If no attributes of a pattern are specified, then the pattern is conventionally a 

rule. Our approach puts the emphasis on the transitions between the two: idioms and collocations 

are elements that are filled in, but which are not fully specified. The key issues of our model are 

how to manage these generalized patterns. MetaMorpho patterns show certain similarities to the 

“translationally equivalent patterns” used in the English-Japanese translation system of Kawasaki 

et al. (1992). The knowledge base in their model consists of patterns mainly utilized to translate 

idiomatic or nonstandard expressions.  

 



 

 

The main reason why the pattern-based idea has not been generally applied is memory limits of 

the earlier computers. MetaMorpho represents a generalization of the EBMT model, however, 

parsing is not statistical, and it combines source language analysis and target language 

interpretation in one single task. If the input is grammatically correct, the system should provide 

correct translation, and if the input cannot be analyzed, the system should provide the translation 

of all the separate correct structures it can identify.  

 

MetaMorpho does not use interlingual representations. Its approach, however, uses no transfer 

steps after parsing, because both structural and lexical transfer have already been done while 

parsing. Thus, it would be very misleading to say that our approach belongs to the paradigm of 

direct translation, just because it is neither interlingual, nor transfer-based. Unlike the first 

primitive machine translation systems, MetaMorpho uses systematic grammatical descriptions 

and a mechanism that is close to the rule-to-rule hypothesis of Bach. The target equivalent of 

source structure is its translation and not the formal logical representation of its semantics. 

MetaMorpho seems to belong to another machine translation paradigm, even it shows some 

relation to machine translation systems which use logical semantic representations (e.g. Rosetta). 

The original form of the rule-to-rule hypothesis in those systems was, however, used as an 

interlingua which essentially differs from the MetaMorpho approach. 
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